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Abstract 

Environmental conditions are important drivers in regulating the distribution pattern of phyto-

plankton composition in the world’s oceans. We constructed models that predict pico-, nano- and 

micro-phytoplankton size classes and assessed the impact of separately including sea surface tem-

perature (SST) and estimates of light level in the surface mixed-layer on model skill. The empirical 

models were trained using size classes estimated by chemotaxonomic analysis of in situ high per-

formance liquid chromatography (HPLC) pigments and environmental data originating from the 

Atlantic Ocean. As the accuracy of transforming pigment data into quantitative size classes is 

crucial when constructing phytoplankton size composition (PSC) models, we also quantified the 

resulting differences of our and several existing PSC models when using class sizes derived from 

HPLC pigments by two common chemotaxonomic methods, CHEMTAX and Diagnostic Pigments 

(DP). Addition of the environmental variables to abundance-based models using our approach im-

proved the skill of correctly predicting PSC, reducing the root mean square difference (RMSD) by 

10 to 20% in the best cases. Addition of SST yielded the highest percentage decreases, on average, 

for all three size classes, with greatest improvement in microplankton and nanoplankton fractions. 

These models performed equal to or better than several existing abundance-based models. The 

improvements in model predictions, however, could be obscured by the choice of pigment method 

used to generate the initial PSC data set. Insufficient data is available to assess whether CHEM-

TAX or DP is the more appropriate chemotaxonomic method to employ when estimating PSC. 

Further collection and analysis of additional water samples for phytoplankton taxa and size by 
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microscopic methods - including traditional microscopic cell counts and automated methods - and 

HPLC pigment data are required to answer this question. 

Keywords: phytoplankton, remote sensing, phytoplankton size, phytoplankton functional type 

1 1. Introduction 

The distribution patterns of oceanic phytoplankton communities have undergone major shifts 

through the course of geologic time due to changes in Earth’s climate, affecting various aspects of 

marine ecosystems on short- (1) and long-term time scales (2). Recent changes in Earth’s climate 

are already impacting the distributions of marine organisms (3), and any changes to marine phy-

toplankton communities have subsequent ramifications to marine food webs and elemental cycling 

with feedbacks to Earth’s climate ((4); (5)). Detecting phytoplankton community distributions and 

their changes over global space and decadal time scales is essential for understanding the complex 

interactions within the Earth-ocean-atmosphere system (6), all of which is necessary for assess-

ing and planning international management efforts on climate change as the compositions of these 

systems respond (7). 

Long-term, continuous plankton records are sparse for much of the world’s oceans. While 

direct measurements of plankton counts exist for some regions (e.g, continuous plankton recorder 

data - (8)), satellite remote sensing provides the best means to monitor phytoplankton trends and 

patterns over the global oceans. For the past several decades, satellite remote sensing has been 

used to estimate the biomass and primary production in the ocean’s surface layer with reasonable 

accuracy (9). Shifts in global phytoplankton biomass have already been observed across regions 

and oceanic basins from remote sensing data analysis ((10); (11); (12)). 

Methods to retrieve additional characteristics of the phytoplankton community from ocean color 

remote sensing data have been developed over the past 20 years based on size and taxonomic class 

attributes. Ultimately, all of these methods use radiometry and/or bio-optical products as their 

primary data source. Key differences between approaches include the specific type of data used as 

input and the resulting output. Abundance-based methods use chlorophyll-a concentration (Chl-a) 

as input ((13); (14); (15); (16)), whereas optically-based approaches use fundamental inherent op-

tical properties, such as those using spectral phytoplankton absorption ((17); (18); (19)) or particle 

backscattering ((20)). Output products also differ and include phytoplankton size class (PSC; e.g. 

(21)), phytoplankton size distribution (PSD; e.g. (22)), and phytoplankton taxonomic class (PTC; 
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28 e.g. (23)). We refer the readers to the recent reviews by (24) and (25) for detailed descriptions and 

classifications of these various methods and products. For another view, a phenological compilation 

of these algorithms were compiled by (26), highlighting commonalities and differences in the global 

cyclic behavior of these products. 

The distribution pattern of any given phytoplankton species is a manifestation of its realized 

niche ((27); (28)), the habitat in which an organism lives in the presence of competition and 

predation. Adding information about environmental conditions to ocean color-based algorithms 

should therefore improve predicted PSC/PTC-type products. This concept is attractive because 

Chl-a and other ecologically relevant variables (e.g., sea surface temperature) are routinely retrieved 

from satellite measurements. For example, the early PSC global model of (29) segregated vertical 

profiles of phytoplankton size into a series of shapes based on whether the water column was 

stratified or mixed, directly using the mixing layer depth as a factor in predicting phytoplankton 

composition. (30) developed a predictive model for Phytoplankton Functional Types (PFTs) for 

the North Atlantic using a neural network approach based on Chl-a, sea surface temperature (SST) 

and other variables (solar irradiation, wind, geography). Similarly, (31) developed a predictive 

model for high latitude plankton communities using an environmentally-based neural network, and 

(12) developed an algorithm to predict the median size of phytoplankton from satellite data using 

SST and Chl-a. 

(13) explored the use of variable model parameters as a function of optical depth, indirectly 

incorporating environmental impacts on size prediction. This work ultimately led to (21), where 

light in the mixed layer was directly used in a function for PSC model parameters. The same model 

form was later adapted to use SST by both (32) and (33). These three algorithms used a conceptual 

model that was directly linked to phytoplankton growth. The advantage of incorporating the envi-

ronmental data in these models is the ability to have flexible environment-dependent parameters, 

as opposed to fixed parameters (e.g., (14)). 

In general, derived products from these models agree on the commonly accepted distribution 

patterns of phytoplankton size/taxa (see (26)), but verifying their accuracy and associated uncer-

tainties is challenging. This is due to the sparseness of phytoplankton composition data from the 

field, and to the difficulties in defining a universal test metric for these algorithms. In regards to 

the latter point, many of the algorithms are basing products as a fraction of biomass tuned or 

developed with regional or global data sets of pigment data determined from high performance 
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59 liquid chromatography (HPLC) using relationships between marker pigments and phytoplankton 

groups. Most of the studies that use marker pigment concepts for training and validation use the 

diagnostic pigment (DP) method originally developed by (34) and subsequently modified by others 

((29); (35); (13); (36); (14)). The DP method relates ratios of pigments to derive fractional biomass 

for size classes and a limited number of taxanomic groups. These ratios vary in nature across taxa, 

photoadaptive states, and regions. These aspects are either not considered or simplified through 

assumptions in the DP method, as the pigment set that comprises each size fraction is fixed a priori. 

CHEMTAX is another method for deriving phytoplankton composition from HPLC pigments 

(37). This method has the advantage of allowing pigment ratios to vary during the processing, and 

optimizes the ratios and class-level abundances to the observed data. This approach has not been 

extensively used in developing PSC/PTC-type algorithms (38), yet possibly is better suited for 

this application. In contrast to the DP method, CHEMTAX produces the fractional contribution 

of pre-defined algal taxonomic groups to Chl-a. From this, size fractions can be derived from 

the taxonomic classes, although some taxonomic classes may span one or more size ranges (e.g., 

diatoms) which also introduces some potential error. In any event, a characterization of size through 

an alternative method would likely result in a different model prediction, but so far has not been 

assessed. 

This study has the following two objectives: (1) to evaluate how adding environmental infor-

mation into PSC models impacts predictive skill relative to those solely using abundance-based 

estimates derived from ocean color radiometric data, and (2) to quantify the differences in PSC 

predictions when using different chemotaxonomic methods to derive phytoplankton size distribution 

from HPLC pigment data. 
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81 2. Methodology 

An overview of our model development to retrieve phytoplankton size class and biomass fractions 

in the ocean’s surface layer is shown in Figure 1. This approach blends a biomass-based model 

form used by (14) with model parameterization schemes introduced by (21) and (33). The suite of 

models in this study were constructed using an aggregated data set of coincidental phytoplankton 

pigment and environmental data obtained from satellite matchups. Phytoplankton size classes were 

derived from HPLC pigments obtained from multiple data sets restricted to the Atlantic Ocean using 

chemotaxonomic methods, and co-located with six satellite-derived variables. Bootstrapping was 
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89 performed to partition the data set into training and validation subsets in order to derive model 

parameters and uncertainties through iterative repetition with random selection. Details of the 

HPLC pigment, satellite-derived variables, and model development are presented in the following 

sections. 

2.1. Pigment Data 

Surface phytoplankton pigments were acquired from existing data sets of HPLC samples col-

lected from a variety of regions in both hemispheres of the Atlantic Ocean (Table 1), including 

oligotrophic gyres, productive shelf waters, temperate open seas and equatorial regions (Figure 2). 

Data were screened for the presence of specific pigments necessary for generating size fractions (see 

Sections 2.3.1 and 2.3.2). A total of 1,211 surface samples from the period spanning 1997 to 2014 

were available after initial quality control. A surface sample was defined as a measurement taken 

in the upper 30 meters. If multiple samples per station were present within this depth interval, 

pigment data were averaged. 

This data set was further assessed for quality control to minimize outliers, particularly as they 

impact the model parameterizations. These checks were based on the premises that microplankton 

were the dominant size fraction at higher levels of biomass, and conversely were low fractions at 

low biomass. The following checks were used based on CHEMTAX and DP fractions: 1) at Chl-a 

< 0.2 mg/m3 , micro fraction < 0.2; 2) at Chl-a > 1 mg/m3 , micro fraction > 0.05; and 3) at Chl-a 

> 1 mg/m3 , pico fraction < 0.1. With these checks applied, the total number of points used in the 

analysis was N=1083. 

2.2. Satellite Data Sets and Match-ups 

Surface pigments were paired with coincidental 8-day composite, gridded level-3 satellite-derived 

products for mixed layer depth (MLD), sea surface temperature (SST), photosynthetic available 

radiation (PAR), and diffuse attenuation coefficient at 490 nm (Kd490) (Table 2). All products 

were obtained freely on the internet. Briefly, PAR and Kd490 global images were obtained from the 

NASA DAAC, and included SeaWiFS (1997-2010) and MODIS-Aqua (2010-2014) data products, 

The MLD products were obtained from the Oregon State University Primary Productivity website 

as 8-day composites using the 0.125 density contrast, derived from the 3-hourly HyCOM global 

reanalysis (model GLBu0.08). Daily Optimum Interpolation SST (OISST) data were obtained 
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118 from the NOAA (https://www.esrl.noaa.gov/) and averaged into 8-day composites. Spatial 

resolution of the satellite data ranged from 4 km2 to 25 km2 across the products. We used a 

search radius of 25 km for locating nearest pixels owing to clouds and missing information from 

some of the satellite data sets. All valid pixels within the 25 km of the pigment data location were 

subsequently averaged. We derived the average irradiance in the mixed layer (IRRmld) according 

to the following equation: 

P AR 
IRRmld = [1 − exp(−KP ARZm] (1)

KP ARZm 

where Zm is the depth of the mixed layer (equivalent to MLD), and KP AR was derived from Kd490 

using the relationship developed by (39). 

2.3. Predicting Phytoplankton Class Size 

Phytoplankton taxa and size classes were estimated from the HPLC pigment data using both 

the DP and CHEMTAX methods. The two resulting phytoplankton size data sets served for 

parameterizing the PSC models and validating the predicted size fractions for uncertainty metrics. 

We summarize the salient aspects of each method below. 

2.3.1. The Diagnostic Pigment Method 

The DP approach converts HPLC data directly into three PSCs that are defined by traditional 

size ranges: pico- (< 2µm), nano- (2µm < x < 20µm) and microplankton (> 20µm). This is 

the most commonly used method for generating phytoplankton size groups from HPLC data and 

is based on sums and ratios of auxillary pigments that are associated with certain phytoplankton 

groups and associated size ranges. The central criteria of this method is assigning one (or more) 

diagnostic pigment to a size class, and normalizing a weighted sum (numerator) to the sum of all 

diagnostic pigments used across size classes (denominator). The DP method detailed in (21) was 

used in this study to derive size fractions and the diagnostic pigments and their associations with 

each PSC are described in their Table 2. 

2.3.2. The CHEMTAX Method 

The CHEMTAX method (37) converts HPLC to phytoplankton taxonomic composition, yielding 

fractions of phytoplankton abundance to the taxonomic class level present relative to overall biomass 

as determined by Chl-a. The algorithm performs a best fit analysis of the matrix of measured HPLC 
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145 pigments to pre-set phytoplankton taxa defined by an initial pigment ratio (IPR) table. Through 

an iterative process, the program adjusts the entries in the IPR table until a residual criterion or 

loop limit is met. The end result is a matrix of phytoplankton class fractions and final pigment 

ratios (FPR) that best approximate each entry. 

CHEMTAX assumes that all samples in the phytoplankton input matrix are in a similar physi-

ological state (37), and a single IPR table (and associated FPR table) is representative of the entire 

population in the matrix. Natural phytoplankton populations from diverse environments are likely 

not in the same physiologic state, and pigment ratios have been shown to vary with light level 

(e.g., (40); (41); (42)). To reduce artifacts from mixing data sets in varying physiological states, 

the field pigment data were sorted by source (e.g. AMT data were not mixed with other data 

sets), and further sub-grouped by light level (i.e., surface PAR range) and time interval. The PAR 

ranges used were: 0-25 mol quanta m 2d−1, 25-50 mol quanta m2 d−1, and 50-75 mol quanta m 2d−1 . 

Calender month was used as the time interval. These subsets were processed as independent units 

by CHEMTAX with IPR tables matched to the PAR level. The three PAR-specific IPR tables were 

formed from multiple sources in the public literature containing pigment tables derived from the 

Atlantic Ocean ((43); (44); (41); (45); (46); (47) - see Appendix A). 

Based on our aggregated pigment data set, the nine common pigments implemented in our 

CHEMTAX analysis were peridinin, butanoyloxyfucoxanthin, fucoxanthin, hexanoyloxyfucoxan-

thin, alloxanthin, zeaxanthin, Chl-b, violaxanthin and Chl-a. The choice of pigments were con-

strained by those shared across the multiple field campaigns. CHEMTAX was programmed to 

derive the following eight taxonomic classes: diatoms, dinoflagellates, chlorophytes, prasinophytes, 

prymnesiophytes, cryptophytes, cyanophytes (i.e. synechococcus) and prochlorophytes. 

Phytoplankton taxonomic groups derived from CHEMTAX were assigned to size fractions com-

parable to those produced by the DP method. The sum of cyanophytes and prochlorophytes 

fractions yielded the picoplankton size class; the sum total of chlorophytes, prasinophytes, prym-

nesiophytes and cryptophytes fractions provided the nanoplankton; and the sume of diatoms and 

dinoflagellates formed the microplankton size class. 

2.4. Model Development and Evaluation 

PSC models were formulated and evaluated for their skill in predicting the biomass fraction of 

the following three phytoplankton size classe: pico-, nano- and microplankton. A logistic model was 
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175 used for both pico- and microplankton based on the form of (14). The logistic model was chosen 

because the sigmoid shape was best suited for the data (see 4.1). We developed and tested models 

without and with environmental data. The former are referred to as the baseline models. Our 

approach for the latter combined aspects of (33) and (21) to create dynamic model parameters as 

functions of the environment. Furthermore, separate models were constructed and assessed from 

each of the chemotaxonomic methods. Bootstrapping was applied for developing model parameters 

and performance characteristics (see 2.4.1). Performance statistics for the models of (14), (13) and 

(33) were also calculated using our data for comparison purposes. 

The (14) model (referred to as H11 henceforth) directly produces phytoplankton size fractions 

(of biomass) for pico- and microplankton with Chl-a as the input variable. In (14), the pico- and 

microplankton models were different. Here, we use the H11 microplankton model for both pico-

and microplankton defined as: 

1 
Fi = (2)

[bi,1 + exp(bi,2 ∗ x + bi,3)] 

where the subscript i equals either p (for picoplankton) or m (for microplankton), x is the log of Chl-

a) and bi,N are parameters determined by nonlinear optimization in MATLAB. The nanoplankton 

fraction was derived by: 

Fn = 1 − Fp − Fm (3) 

This constrains the fractions to sum to one, and thus any errors in pico- and microplankton models 

are cumulatively translated into the nanoplankton fraction. 

Whereas the H11 model solves directly for fraction of biomass as a relative amount, (13) and (33) 

(henceforth referenced as B10 and B17, respectively) directly solve for the absolute size-fractionated 

Chl-a, from which the relative fraction can be derived. The B17 size models are identical in form to 

B10 - both solve for the amount (i.e, Chl-a) of picoplankton, and nanoplankton plus picoplankton. 

In these models, fractions must sum to unity. Thus, the nanoplankton and microplankton fractions 

are derived by subtraction. The main difference between the two models is that B17 incorporates 

SST as an index for the values of the model parameters. 
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201 2.4.1. Bootstrap and Binning Environmental Variables 

A baseline set of parameters were derived from the full data set for both picoplankton and 

microplankton models. The bootstrap method (48) consisted of repeated creation of training and 

validation data sets using a random number generator based on a 75/25% split of data, respectively. 

For the baseline model that did not include environmental variables, 1000 iterations (without re-

placement) were run. Model parameters to the logistic functions were derived for each iteration, 

and averaged to obtain gross baseline parameters. 

In order to incorporate external environmental conditions into the models, picoplankton and 

microplankton size class fractions were re-ordered by ascending environmental parameter following 

(21, 33). For this study, SST, PAR, and IRRMLD were each independently evaluated. The logic 

behind this approach is that environmental links to PSC will be expressed in model parameters. 

Starting with the lowest value for the given environmental variable and extending to a higher value 

determined by a fixed window size, subsets of Chl-a and size fraction pairs were set aside for model 

parameterization and validation. A window size of 150 sequential data points was used, which we 

determined from trial and error as an optimal number for window width. The first 150 ordered 

points based on SST, for example, would be used for the first parameterization. On the next 

increment, the window would advance to the second point in that subset as the new starting point. 

The process was repeated until the highest value of the environmental variable was reached (a total 

of 637 times or intervals) for the higher end of the sliding window. At each interval along the 

gradient, parameters to the logistic model were derived and saved. This resulted in a set of model 

coefficients that were fitted to constrained ranges of environmental variables. 

The re-ordering of size data from the HPLC pigments varied with environmental variable, pro-

ducing three different versions of sorted data. Uncertainties for each step were computed with the 

a validation set within the same range as the sliding window. The process was repeated with new 

training and validation data created from random numbers. We ran 1000 iterations of this process, 

creating a large matrix of model parameter coefficients for the pico- and microplankton models and 

associated uncertainties. To our knowledge, this technique permits the introduction of only one 

environmental variable to a function at a time. 

For each iteration in the bootstrap sequence, Root Mean Square Difference (RMSD) was calcu-

lated for the three size fractions derived using our baseline and environmental-based models, and 

the models of H11, B10 and B17. RMSD is used instead of Root Mean Square Error because an 
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232 error is the difference between an observation and the truth, which is unknown in our study. A total 

of 30 RMSD calculations were made per iteration (three size groups X five models X two pigment 

methods), and then averaged to a single RMSD values for each model and size class. RMSD was 

computed as follows: 

rPn 
i=1 (x

2 − y 2i i )RMSD = (4) 
n 

where xi = observed and yi = modeled output. 

233 

234 

235 

236 

237 

238 3. Results 

3.1. Comparison of Chemotaxonomic Methods 

Despite fundamental differences in the construction of the size class fractions, the two chemo-

taxonomic methods generally agree (Figure 3). Mean phytoplankton size class fractions computed 

by CHEMTAX and DP display a positive linear relationship, indicating an underlying similarity in 

how the auxillary pigments are used by the two methods. On closer examination, notable differ-

ences are seen, with considerable fractional variability for any given size group. The RMSD values 

between the two methods are 0.11, 0.20 and 0.17 for picoplankton, nanoplankton and microplank-

ton, respectively. The resulting picoplankton and microplankton fractions generally were slightly 

lower for CHEMTAX than DP, particularly at lower fractions. The nanoplankton fraction, on the 

other hand, was considerably higher for CHEMTAX than that generated using DP at fractions 

> 0.2. Without any other independent measure of size fractionation (e.g., cell counts), it is not 

possible to conclude which method is more accurate for this data set. Ultimately, these differences 

are expressed in the model parameterization. We note that PSC produced from methods based on 

the DP results could display similar trends. In other words, models based on DP would tend to 

report higher picoplankton and microplankton fractions compared to CHEMTAX derivations, with 

a consequent decrease in nanoplankton. 

3.2. Model Form and Parameterization 

The PSC models constructed in this study (collectively referred to as MB19 henceforth) for pico-

and microplankton contain three parameters (bi,1, bi,2 and bi,3) that govern the overall shape of the 
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258 functional response. The predicted biomass fraction for picoplankton takes the form of an inverse 

logistic function (sigmoid shape) with fractions decreasing with increasing chlorophyll concentration, 

whereas the shape of the predicted microplankton fraction is sigmoid with fraction increasing with 

increasing Chl-a (Figure 4). The resulting shape of the predicted fraction for nanoplankton is bell-

shaped with a peak located at medium Chl-a concentrations (not shown). These baseline models, 

i.e. those without environmental variables, follow more closely to the B10 predictions in shape than 

H11, with larger relative differences seen in our models developed with the CHEMTAX data. We 

used a different model form for picoplankton than H11, which explains some of the shape disparity. 

Our baseline model systematically predicts lower microplankton fractions compared to the H11 

model using the same CHEMTAX transformed data (Figure 4). 

The mean and standard deviation of the model parameters for the environmental treatments 

(SST, IRRMLD and PAR) using CHEMTAX data set from the full bootstrap process are shown in 

Figure 5. Parameters of both the picoplankton and microplankton models varied across the ranges 

of these three environmental variables, but were similar in shape for the two pigment methods for 

each environmental treatment (not shown). The bi,1 parameter average exhibits the least amount of 

variation, and the bi,2 parameter displaying the most. The shape of the bi,3 parameter was generally 

similar to that of the bi,2 parameter, though muted. Over the range of SST, averaged bi,2 and bi,3 

varied over two-fold. The parameters changed slope at multiple positions along the environmental 

gradient for each model. For SST treatments, bp,2 and bp,3 in the picoplankton model changed 

slope at or near 13◦C, 18◦C and 24◦C. Similar elbow points appear in the microplankton model at 

10◦C, 15◦C, 20◦C and 25◦C, while bm,3 generally showed less pronounced elbows except near 20◦C 

and 25◦C. Similar elbow points and variations were observed for the parameters over the ranges of 

IRRMLD and PAR. 

Single sets of model parameters from the smoothed average of these iterations were generated for 

each phytoplankton size class, environmental variable, and chemotaxonomic method. The smooth-

ing algorithm was applied to the mean values of the parameters across each environmental range, 

and a look up table (LUT) was created for each parameter indexed by the environmental variable. 

This approach differs from B17 where functions were fit to the environmentally-dependent model 

parameters. For each pigment method, the RMSD values during each iteration were derived for the 

baseline and environmental model treatments from the validation data subsets. These were then 

tabulated and averaged to single, bulk statistics (Tables 5, 6). 
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289 3.3. Model Performance and Impact of Incorporating Environmental Variables 

Incorporating environmental variables into our PSC models improved the average performance 

over their baseline versions in the majority of cases (Tables 5, 6). The only exceptions were the 

picoplankton models indexed by PAR and IRRMLD, where including these variables yielded no 

significant reduction in RMSD. Addition of SST yielded the greatest improvements in average 

performance to all size fraction models estimated by both chemotaxonomic methods, followed by 

IRRMLD and PAR (Tables 5, 6). The CHEMTAX and DP picoplankton fraction predictions 

improved with the addition of SST, with a reduction in RMSD to 0.122 (9.6%) and 0.118 (11.9%), 

respectively. Similarly, improvements in the models of the remaining two size fractions gained by 

the incorporation of SST were greater in both pigment treatments. Average RMSD of the nano-

and micro-plankton models from the DP treatment decreased to 0.136 (31.0%) and 0.167 (11.6%), 

respectively. The CHEMTAX data set showed a greater improvement in the microplanton fraction 

(20.6%), and a smaller level of improvement for the nanoplankton (24.2%) relative to DP. Since the 

nanoplankton fractions are derived from both pico- and microplankton models, this size fraction 

prediction improved the most, and cumulatively benefited from gains in each size fraction models. 

Among these three environmental variables, SST reduced RMSD the most overall. However, 

the overall pattern of improvements seen in Tables 5 and 6 suggest a degree of covariance between 

the environmental variables. The IRRMLD is directly derived from PAR, and (33) showed a high 

degree of covariance between SST and IRRMLD (see their Figure 1). Based on our data set, all 

three variables were positively correlated. The correlation was highest between PAR and IRRMLD 

(r=0.67), and moderate between both SST and PAR (r=0.52) and SST and IRRMLD (r=0.53). 

Thus, the patterns seen in the RMSD changes for the different environmental variables was similar 

owing in part to these covariations. 

3.4. Comparison to Previous Abundance-based PSC Models 

In general, the overall performances of the environmentally-augmented MB19 models performed 

better than the PSC abundance-based models that we compared (Tables 5, 6). This was not 

unexpected as the external models were developed using different data (though with some overlap), 

different pigment/size methods (i.e. CHEMTAX vs. DP method), different models, and different 

input variables. The baseline performances were at slightly better (picpoplankton) or roughly equal 

(nanoplankton and microplankton) to the same comparative models. 
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319 Detailed examination of model RMSD shows a more varied performance over the range of 

the environmental variables considered (Figure 6). Across the full environmental ranges, the 

environmentally-augmented MB19 models always had the lowest RMSD. Interestingly, the RMSD 

values of the baseline MB19 (without environmental variables added) were considerably higher than 

the other models for retrieving the microplankton fraction, and consequently the nanoplankton frac-

tion, throughout their respective lower values, i.e. less than 15◦C for SST, 10 mol quanta m 2d−1 

for IRRMLD, and 30 mol quanta m2d−1 for PAR. Improvements of picoplankton retrievals relative 

to the baseline MB19 model were seen at lower (< 15◦C) and higher temperature (> 20◦C), with 

little to no change in between. For the microplankton model, larger improvements are present over 

the same ranges, and also show similar model performance between 15◦C and 20◦C. 

The combined improvements of the pico- and microplankton fractions translated into the im-

proved retrieval of the nanoplankton fraction across the temperature range except 18◦C (Figure 6). 

The MB19 models using PAR and IRRMLD show similar range-dependent improvements, with the 

largest overall reduction in RMSD in the nanoplankton fraction. To explore this further, we exam-

ine the model with SST parameterization as a general case applicable to the PAR and IRRMLD 

models. 

3.5. SST Model Analysis 

The biomass fractions of the three size classes predicted by the SST MB19 model relative to 

the baseline over a range of Chl-a provide insight into how adding SST influences retrieval skill 

(Figure 7). The model curves in Figure 7 were separated by 10◦C temperature ranges for ease of 

viewing. For the picoplankton size class, the MB19 SST model predicts higher fractions at higher 

temperatures for all but the highest Chl-a concentration. This is most evident in the 15-25◦C 

picoplankton plot that shows the systematic increase in fraction with increasing temperature. At 

the highest Chl-a, i.e. > 10 mg/m3 , no temperature dependency exists, although this was beyond 

the range of the model; predictions of biomass fraction decline to zero. In addition, an offset in the 

position of this systematic increase relative to the baseline (as indicated by the dashed line) shifts 

upward as temperatures increase, improving the retrieval of predicted fraction. For instance, the 

biomass fraction of picoplankton is predicted to be higher for all Chl-a levels relative to the baseline 

model at high temperatures (25-35◦C) (Figure 7, upper left panel). For the microplankton class, the 

modulations in biomass fraction and its position relative to the baseline as functions of temperature 
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349 are more complex. Increasing temperature generally decreases fraction, except at temperatures 

ranging between 15-25◦C and Chl-a between 0.3 to 3 mg/m3 where the opposite is seen. For the 

nanoplankton class, the SST model generally predicts a response intermediate between the pico- and 

microplankton size classes. Whereas increasing temperature generally decreasing predicted fraction 

relative to the baseline at low to medium Chl-a levels, the reverse is seen at higher chlorophyll 

levels. 

Figure 8 illustrates the distribution of in situ data and modeled (CHEMTAX-based MB19 

SST) biomass fraction for the three phytoplankton size classes as a function of SST and Chl-a. 

The distribution of in situ data do not fill the entire modeled domain of these variables but are 

located within an envelope of SST and Chl-a ranges, as demarcated by the red dashed line. While 

the models can predict PSC fractions outside the bounded region, they possess a higher level of 

uncertainty than those within the area where data are available. Analysis of image pairs (monthly 

SST and Chl-a in the Atlantic Ocean bounded by 70 degrees north/south latitude) indicate slightly 

different patterns, but distributions are still within the bounded dashed region (not shown). While 

the environmental spaces outside the bounded zone likely exist, they are largely beyond the study 

area. 

Similarities and differences between the MB19 SST models (DP- and CHEMTAX-based) and 

the B17 model are highlighted when mapped in the same manner (Figure 9). All models predicted 

high fractions of microplankton at Chl-a levels above 1 mg/m3 , yet differ on the influence of tem-

perature: the B17 model predicts higher fractions with less sensitivity to temperature, whereas the 

CHEMTAX MB19 model restricts the highest fractions of microplankton to lower temperatures, 

with fractions decreasing as temperature increase. The MB19 model developed from DP data does 

not show this and appears to be more similar to the B17 predictions. The nanoplankton models all 

predict higher fractions in intermediate Chl-a values (0.1 mg/m3 to 1.0 mg/m3), although differ-

ences are also seen. The nanoplankton fractions for our models (DP and CHEMTAX) were derived 

from equation 3, and are thus dependent on the pico- and microplankton size models, essentially 

the residual difference from unity. For B17, explicit nanoplankton fractions are also derived but 

are not dependent on the microplankton fraction (only dependent on the picoplankton fraction). 

Of the predicted fields for nanoplankton, our CHEMTAX temperature-dependent prediction shows 

higher fractions in the intermediate Chl-a range, and also larger values over a larger SST - Chl-a 

space than the other two. 
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380 3.6. Application of the Models 

Application of the MB19 SST models to monthly image composites derived from VIIRS for Jan-

uary and July 2017 yields the commonly expected distribution pattern of the three phytoplankton 

size classes (Figure 10). Pico- and nanoplankton size classes represent the major biomass frac-

tions across much of the Atlantic Ocean. Comparison of the distribution pattern of these two size 

classes between the months also shows the expected seasonal expansion/contraction between these 

two fractions in the North and South Atlantic subtropical gyres. Microplankton represent only 

a minor fraction of phytoplankton biomass during the months shown, but their fraction increases 

significantly during autumn/spring months in temperate zones (not shown). 

Difference maps between the MB19 baseline model and the SST model for January and July 

2017 reveal systematic regions of relative positive and negative differences across the Atlantic Ocean 

(Figure 11). The baseline model overestimates picoplankton relative to the SST model in much 

of the subtropical gyres and temperate zones, and underestimates them in the equatorial region. 

This comes at the expense mostly of nanoplankton, which are consequently underestimated in the 

regions where picoplankton are overestimated. Microplankton distributions showed the smallest 

differences, likely because this size fraction was generally low across much of the region (Figure 10). 

Several interesting patterns appear in the difference maps that are coherent with oceanographic 

features. For example, a picoplankton/nanoplankton overestimate/underestimate feature is seen in 

both months that closely follows the pattern for the Gulf Stream along the U.S. southeast coast. 

Another feature with opposite associations is visible along the southeast coast of Canada resembling 

the Labrador Current. Both of these oceanographic features have strong SST expressions, and 

highlight the influence of SST on PSC in the model. These maps in general illustrate that most of 

the differences are contained in a picoplankton-nanoplankton trade-off with lesser changes in the 

microplankton community during these months. 
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404 4. Discussion 

4.1. Phytoplankton Size Class Prediction 

We set out to test whether the remotely sensed retrieval of phytoplankton size could be im-

proved by incorporating environmental data into an abundance-based model. This is a viable ap-

proach because 1) biomass is readily measured from remote sensing, 2) several key environmental 
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409 variables that shape phytoplankton communities (directly through niche suitability and indirectly 

through competition and mortality factors) are also available from remote sensing, and 3) previous 

studies have shown this approach to be feasible. (49) investigated size distribution in relation to 

environment and found dependencies between light level and size, and (33) demonstrated that en-

vironmental information could be directly included into a phytoplankton size model through model 

parameter dependencies. 

Typically, size fraction data used in these types of studies are derived indirectly according to a 

suite or combination of pigment concentrations that are indicators of taxonomic composition. While 

numerous studies have assessed size and/or taxa fractionation biomass for the DP method (e.g., 

(50); (29)) and CHEMTAX (e.g., (51); (52)), a comprehensive comparison of size/taxa derived from 

the two methods has not yet been conducted with global data sets, although analyses on regional 

data sets are now emerging (38). In the absence of such an analysis with in situ data in this study, we 

investigated the impacts and sensitivities on size models from these two alternate chemotaxonomic 

approaches. We also wanted to assess how adding environmental variables impacted the relative 

change of predictions from the various pigment methods. 

In both pigment treatments (CHEMTAX and DP), addition of abiotic environmental variables 

to the baseline biomass-only PSC models improved the skill of correctly predicting phytoplankton 

size class fractions, reducing the RMSD on the order of 10 to 20% for the different variables exam-

ined in data sets from the Atlantic Ocean. SST-integrated models yielded the highest percentage 

RMSD decreases, on average, for all three size phytoplankton classes. Relationships between tem-

perature and species distributions in nature have been repeatedly observed (e.g., (53); (54); (55)). 

Temperature has a direct effect on physiology of marine phytoplankton (e.g., dark reactions; (56)), 

yet its impact on size is likely the result of an accumulation of indirect effects. In this sense, tem-

perature acts as a proxy for other ecologically important covariates and serves as a comprehensive 

‘catch-all’ environmental parameter (57). 

The improvements appear to have limits within the constraints with our tests. In our study, 

we explored only a few model forms and limited model parameterization to one abiotic variable 

dependency at a time. We examined multiple forms of logistic models for pico- and microplankton 

size groups. Logistic models are commonly used to model population growth (58). The best 

model form we found for both picoplankton and microplankton was a three-component model 

with a sigmoid shape and asymptotic limits, which was based on the microplankton model used 
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440 by (14). The picoplankton fractional data used in our study was better fit to a sigmoid model 

and was consistent with the shape found in (13), displaying asymptoptic behavior at the low and 

high end of the biomass spectrum. This differed from the (14) model in shape (as shown Figure 

4) that exhibits exponential behavior at the biomass low and high ends. Although this model 

(MB19) is fundamentally different from the (13), (21) and (33) size models, the resultant model 

predictions are very similar. In (21) and (33), functions were fit to estimate parameter values from 

environmental data. Lacking smooth features amenable to functional fitting, we used Look Up 

Tables (LUTs) to capture the variations seen in the environmental segments. Similar to machine 

learning algorithms, the risk of the LUT approach is over-fitting the model to the training data 

and reduced accuracy for patterns outside the data domain (59). Yet, fitting a function that does 

not capture the parameter variations has its own set of issues, e.g. noisy parameter selection from 

poor function fitting. While direct comparisons with alternative methods are outside the scope of 

this study, there are multiple ways to represent or incorporate environmental data with statistical 

methods. Other studies incorporating environmental data have developed models using multivariate 

linear regression (e.g., (60)) and neural networks (e.g., (31)). These approaches would allow for 

multiple environmental variables to be incorporated simultaneously, a potential advantage over the 

single variable (e.g., SST) used in our study. 

What, if any, linkages can be made between the temperature-dependent model coefficients and 

ecological associations? Logistic model parameters have been associated with aspects of population 

growth (e.g, growth rate, carrying capacity) when used explicitly as growth models. In our case, 

we are not using the function as a growth model. In the B10 and B17 models (as well as (21) and 

(32)), the parameters were directly linked to phytoplankton ecological attributes, such as carrying 

capacity. We are hesitant to ascribe physical meaning to individual parameters in our models, 

even though the predicted outputs from the Brewin’s B10 and our models have similar shape 

characteristics (Figure 4). As the Brewin family of models and our models are based on different 

model forms and concepts, direct comparison between parameters is not meaningful. However, 

similarities of overall behavior of model parameters across environmental space are seen with (21) 

and (33), which may suggest ecological connections. 

The goal in our study was to improve model prediction by directly incorporating environmental 

factors, not to investigate the ecological drivers for phytoplankton size determination (e.g., (49)). 

In other words, we focused on accurately predicting the outcome and not elucidating any causal 
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471 relationships. (21) and (32), who modeled size fraction residuals as a function of SST, noted that 

the behavior of predicted size fraction outputs from their model when adjusted by environment 

agreed with general ecological understanding. In the same context, we interpret the predictions 

of our models in relation to a broad view of how model predictions change in relation to varying 

parameters across environmental space. In our models that incorporated environmental data, the 

variation of parameters across environmental space are neither static nor monotonic. For example, 

when ordered by temperature, our model parameters show different trends (rising or falling) within 

specific temperature ranges (Figure 5). The first identifiable SST range with parameter change 

occurs from roughly 5◦C to 15◦C. In this range, picoplankton parameters bp,2 and bp,3 decreased 

systematically, while microplankton parameters bm,2 and bm,3 increased. The next range occurs 

from 15◦C to 25◦C, where these same parameters show opposite tendencies (i.e., microplankton 

parameters decreased). The last range is from 25◦C and higher, and showed both picoplankton and 

microplankton parameters increasing systematically. Whatever the underlying reason, the inclusion 

of SST in the model helped describe the distribution of data more accurately (Figure 8). (32) noted 

that SST improved predictions at colder, polar regions. Our data set does not adequately represent 

these regions, so we cannot verify that conclusion with our analysis. Ultimately, the parameters 

control the behavior of the model, and we have shown how the model responds to these changes 

(Figure 7). While temperature may be a covarying proxy for other environmental properties, we 

note the these inflection points exist and only speculate that indirect ecological connections could 

exist, yet the connection may be with other unknown variable(s) that covary with SST. 

Potential issues of incorporating environmental data into these types of algorithms exist. Pri-

marily, analyses with the size fraction data products derived from models using the same environ-

mental data violate data independence. Testing for physical drivers of size structure (e.g., (49), 

(26) and (13)) could be compromised if an environmental variable (e.g., SST) was used to estimate 

size structure and employed as the environmental factor. While our work is already a form of a 

coupling study, we acknowledge the loss of data independence with a similar type of study with 

our PSC models. Yet, the benefit of data independence could be outweighed by less precise PSC 

products. It could be argued that the gains made through improved precision are more important 

than potential drawbacks of losing data independence in examining physical-biological interactions, 

if that is an intended use of the products. 
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501 4.2. Defining Phytoplankton Community Composition 

The large and growing amount of available HPLC pigment data collected globally make it an 

attractive and useful source of data for developing indicators of phytoplankton composition. While 

the HPLC methods are robust for quantifying pigments and their concentrations, the methods that 

transform the pigment information into phytoplankton attributes rely upon assumptions that are 

often violated. This is particularly true when dealing with a composite pigment data set assembled 

from diverse regions. These difficulties stem from the large variability of pigments across and within 

phytoplankton size and taxa, the broad range of sizes and size partitions for some phytoplankton 

taxa, and the consequent problems in the conversion of pigment concentrations and their ratios to 

fractions of phytoplankton sizes and/or taxa. The HPLC-based models reviewed by (24) rely on 

the transformation of pigments to size fractions based on the DP method originating from (34). 

Our use of both CHEMTAX and DP enabled us to assess the impact of using different chemo-

taxonomic methods in estimating PSC group from HPLC pigments. Fundamentally, both methods 

rest on the same basic assumption that different pigments determine taxonomic composition and 

hence size of the comprising phytoplankton. One difference between the methods is that CHEM-

TAX produces algal classes as an output, compared to size fractions for DP analysis, although we 

note that DP relies on implicit assignments of specific taxa categories to size compartments. The 

other key difference is that CHEMTAX allows for pigment ratios to vary during iterative processing 

and that pigments can be shared across different classes, whereas the DP method fixes pigments to 

specific algal size fractions with fixed relationships. To compare PSC models from both methods, 

CHEMTAX class fractions were re-organized into size fractions. This introduces another source of 

uncertainty because not all phytoplankton from a given taxon are the same size, and exposes the 

key flaw in relating pigments to specific phytoplankton size ranges. 

While the addition of environmental variables improved predictive skill for both pigment treat-

ments, the improvements were smaller than the RMSD differences between the two chemotaxonomic 

methods themselves (Figure 3). This suggests that the basic transformation of HPLC pigments to 

PSC quantities (e.g., size fractions) are a critical aspect of initializing the phytoplankton commu-

nity structure. It is unknown which pigment method is better, as we did not have any validation 

data to compare. A number of studies have evaluated size-fractionated biomass data with pigment-

derived size fractions (e.g., (61); (32); (62); (63)). Phytoplankton size and taxonomic composition 

from the open ocean are difficult to routinely measure, and PSC algorithms are ultimately being 
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532 evaluated against community composition estimates with imperfect derivations. Thus, we cannot 

state with confidence which PSC algorithm or pigment method is ’better’, only that incorporating 

environmental data did improve the models. However, the choice of pigment method is critical 

and impacts skill assessment for any and all bio-optical model approaches (e.g., abundance-based, 

IOP-based). Newer automated technologies and data sets are emerging, such as digital microscopic 

imaging using flow cytometric (64) and holographic (65) techniques, that can potentially serve to 

confirm HPLC assessments of PSC more routinely, in addition to traditional cell counting methods. 

4.3. Chlorophyll-a as an Indicator of Biomass 

Abundance-based PSC algorithms are appealing because estimates of Chl-a can be derived 

from satellite data, routinely providing Chl-a maps over spatial and temporal scales not obtainable 

by other means. The premise for the abundance-based approach is based on a simple and long-

standing concept that Chl-a is a proxy for phytoplankton biomass. Cellular biomass is the sum of 

all components of which chlorophyll-a comprises only a small fraction (up to 5%) (56). Cellular 

carbon content is potentially a better indicator of biomass, as it is more stable than Chl-a to 

external conditions over short time scales (e.g., light variation), and constitutes a greater fraction 

of cell biomass. The Chl-a can be converted to carbon using a chlorophyll-a to carbon ratio 

(Chl : C). This ratio, which ranges from less than 0.005 to 0.1 mgChl − a : mgC (66), is influenced 

by a variety of factors including nutrient and light history, physiological state and taxon. Thus, 

size fractions based on carbon is expected to be different compared to Chl-a. 

Phytoplankton size or taxonomy products could be based on carbon as a measure of phyto-

plankton biomass if Chl : C could be integrated into a biomass-based model. (67) has developed a 

carbon-based size product using ocean color data via particle backscattering. Similarly, a pathway 

exists to do this for biomass-based algorithms using CHEMTAX or DP products combined with 

taxon-specific Chl : C. The main input fields would have to be taxonomic groups in this case. We 

note that CHEMTAX directly produces this form of product, while with DP individual auxillary 

pigments must be assigned to specific taxanomic groups (e.g., (33), (15), and (14)). 

To hypothetically explore first order estimates on the differences incurred in size fractions when 

using carbon as the biomass indicator, we converted the CHEMTAX output from fractions of 

Chl − a to carbon using values for taxon-specific Chl : C from (68). Their study demonstrated that 

variations in Chl : C occurred between and within different algal taxonomic groups, although not 
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562 all groups were presented. We used the value for green algae for several of the CHEMTAX groups 

(prasinophytes, chlorophytes and cryptophytes), for example. The comparisons between pico- and 

microplankton fractions show non-linear trends (Figure 12). The trends show that chlorophyll-based 

fractions are lower than picoplankton relative to carbon-based fractions (with a mean absolute 

percent difference of 23%), and microplankton chlorophyll-based fractions are higher relative to 

carbon-based fractions (mean absolute percent difference of 55%). Assuming model fits to these 

fractions have the same performance as the chlorophyll-based models we developed, the implications 

are that microplankton fractions would be reported lower for all conditions. In this case, most of the 

increased fraction would be assigned to nanoplankton, as the picoplankton differences are smaller 

and we would expect a smaller difference between the two model predictions for picoplankton. 

We note that substituting DP-derived taxonomic fractions yielded similar results (not shown). A 

potential advantage of using CHEMTAX is that it offer an access to a wider range of taxonomic 

groups over DP, dependent on the pigments used and taxonomic groups known a priori. For any 

case, Chl : C assessments of algal classes are required. While these ratios vary within classes 

themselves, they would provide the link from Chl − a to carbon-based modeling. Whether Chl-a 

or carbon-based models are used, incorporating environmental data into the models would improve 

predictive capability for deriving phytoplankton size fractions. 
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579 5. Conclusions 

Phytoplankton size models are important tools for understanding global distributions of eco-

logical compartments (69) and refining estimates of global oceanic primary productivity (33). We 

chose to explore abundance-based models, one of several types, in part due to its simplistic divisions 

and amenability to satellite observation. We were also interested in combining other environmental 

data from satellites into the model, based on the influence of the abiotic environment in shaping 

phytoplankton communities, expressed through taxonomic and hence size distributions. Based on 

the models of (33) and (14), we examined the performances of phytoplankton size models with 

environmental-based parameters using size-partitioned data sets using two different pigment meth-

ods. 

Addition of environmental variables to biomass-based models using the approach tested here im-

proved the skill of correctly predicting PSC to varying degrees. Addition of SST yielded the highest 

percentage decreases on average for all three size classes: pico-, nano-, and micro-phytoplankton. 
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592 This result is logical and ecologically reasonable, as adding information about environmental fac-

tors, which are known to shape phytoplankton communities, should improve retrieval accuracy. 

However, and most importantly, the skill improvements were smaller than the overall differences 

between the two chemotaxonomic methods themselves. The basic transformation of HPLC pig-

ments to PSC quantities is a critical step for defining the size community, and basic improvements 

to model prediction could be gained if it were known which pigment method was better. Insuf-

ficient data is available to unequivocally state if the DP or CHEMTAX method is better suited 

for estimating phytoplankton taxonomic and class size. More water samples must be collected and 

analyzed through microscopic methods (e.g., direct counting, flow cytometry and other automated 

methods) for phytoplankton size and taxonomic composition in conjunction with HPLC pigment 

analysis. 
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817 6. Tables 

Table 1: Source and number of High Performance Liquid Chromotography (HPLC) samples used in this study. 

Source Time Frame N N QC’d 

AMT 

P angea 

GulfofMaine 

CLIV EC 

SeaBASS 

T otal 

Aug 1997 - Nov 2010 

Feb 1998 - Apr 2007 

Jan 2006 - Dec 2009 

Aug 2009 - Aug 2012 

Feb 2001 - Nov 2010 

543 

98 

76 

441 

53 

1211 

498 

82 

69 

425 

9 

1083 
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Table 2: Name and characteristics of satellite data sets used in this study 

Parameter Source Time Frame Spatial Resolution Temporal Resolution 

SST NOAA AVHRR 1997-2014 4km 8-day 

P AR NASA SeaWiFS 1997-2010 9km 8-day 

P AR NASA MODIS-Aqua 2010-2014 4km 8-day 

MLD HyCOM 1997-2014 9km 8-day 

Chl − a NASA SeaWiFS 1997-2010 9km 8-day 

Chl − a NASA MODIS-Aqua 2010-2014 4km 8-day 
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Table 3: Correlation coefficients between environmental variables 

Parameters All Pico Nano Micro 

SST /IRRM LD 0.5625 0.1328 0.6032 0.6978 

SST /P AR 0.5133 0.1015 0.4968 0.6207 

IRRM LD/P AR 0.6715 0.5457 0.7088 0.8090 
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Table 4: Baseline coefficients of the phytoplankton class size (PSC) models developed in this study 

Size derivation Size fraction bi,1 bi,2 bi,3 

CHEMT AX Picoplankton 1.54 5.23 3.39 

Microplankton 1.88 -3.59 0.06 

DP Picoplankton 1.41 2.82 1.72 

Microplankton 0.82 -1.33 0.39 
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Table 5: Root Mean Square Error (RMSD) of PSC models evaluated in this study using phytoplankton sizes classes derived from HPLC data by CHEMTAX. 

Size Fraction Test Scenarios Existing Algorithms 

SST Baseline %Change IRRMLD Baseline %Change P AR Baseline %Change H11 B10 B17 

P icoplankton 0.122 0.135 -9.6 0.134 0.132 1.5 0.140 0.139 0.0 0.191 0.160 0.153 

Nanoplankton 0.175 0.231 -24.2 0.189 0.229 -17.7 0.196 0.227 -13.7 0.253 0.256 0.266 

Microplankton 0.150 0.189 -20.6 0.153 0.191 -19.9 0.157 0.189 -16.9 0.185 0.173 0.185 

Table 6: Same as Table 4, but using phytoplankton size classes derived from HPLC data by the Diagnostic Pigment method. 

Size Fraction Test Scenarios Existing Algorithms 

SST Baseline %Change IRRMLD Baseline %Change P AR Baseline %Change H11 B10 B17 

P icoplankton 0.118 0.134 -11.9 0.132 0.132 0.0 0.139 0.139 0.0 0.160 0.136 0.136 

Nanoplankton 0.136 0.197 -31.0 0.147 0.196 -25.0 0.157 0.196 -19.9 0.184 0.138 0.146 

Microplankton 0.167 0.189 -11.6 0.162 0.190 -14.7 0.167 0.188 -11.2 0.185 0.173 0.185 
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7. Figures818
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Figure 1: Schematic flow of methodological approach.
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Figure 3: Comparison of phytoplankton size classes derived from CHEMTAX and the Diagnostic Pigment (DP) 

method. The 1:1 line is included in each plot. The data set consists of surface HPLC samples from the Atlantic 
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(13) and (14), respectively. 
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Figure 5: Mean and standard deviation of parameters across environmental space of sea surface temperature, average 

irradiance in the mixed layer, and photosynthetically available radiation for picoplankton (top row) and microplank-

ton (bottom row) size class fraction models developed in this study. No nanoplankton model data are displayed 

because none were constructed; the fraction of nanoplankton were derived according to equation 3. 
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Figure 6: RMSD distributions for each PSC model across ordered environmental space. 
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Figure 7: Predicted curves for biomass fractions of pico-, nano- and micro-plankton size classes using the sea surface 

temperature (SST) model developed in this study. Top row: curves in the SST range of 25 to 35◦C; Middle row: 

curves in the SST range of 15 to 25◦C; Bottom row: curves in the SST range 5 to 15◦C. Black dashed line represents 

the baseline prediction. Note the scale change for the difference temperature ranges. 
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Figure 8: Distribution of in situ (top row) biomass fraction for pico-, nano- and micro-plankton size classes in

relation to sea surface temperature (SST) and chlorophyll concentration. Points are color-coded by the intensity of

the biomass fraction for the given size group. Bottom row: the same axes as the top row, with the colors expressing

the size fraction intensity resulting from the MB19 model with SST. The in situ data distribution boundaries derived

from the top row are superimposed over these plots.
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Figure 9: Distribution of biomass fraction for pico-, nano- and micro-plankton size classes (PSC) in relation to sea 

surface temperature (SST) and chlorophyll concentration Chl-a in the MB19 model with SST based on CHEMTAX 

PSC (top row), MB19 model with SST based on Diagnostic Pigment PSC (middle row), and Brewin et al., 2017 

model (bottow row). 
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Figure 10: Distribution pattern of biomass fractions of the three size classes predicted for January and July 2017 

using the sea surface temperature augmented model developed in this study. 
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Figure 11: Difference maps between MB19 baseline model (without environment) and the MB19 model with SST 

for monthly VIIRS image pairs shown in Figure 10. Hotter color (reds) indicate higher SST model fractions relative 

to the baseline model. Black indicates regions where PSC fractions were not calculated. 
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Figure 12: Carbon vs. chlorophyll estimated biomass fraction for picoplankton (left) and microplankton (right). 
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819 Appendix 

Table 7: CHEMTAX Initial Pirgment Ratio table - Low PAR 

Algal class Pigment ratios 

P erid 19 − but F uco 19 − hex Allo Zea Chl − b V iola D.Chl − a 

Diatoms 0 0 0.54 0 0 0 0 0 0 

Dinoflagellates 1.06 0 0 0 0 0 0 0 0 

Cyanophytes 0 0 0 0 0 0.49 0 0 0 

P rymnesiophytes 0 0.3 0.43 0 0 0 0 0 0 

Chlorophytes 0 0 0 0 0 0 0.41 0.06 0 

P rasinophytes 0 0 0 0 0 0 0.79 0.03 0 

Cryptophytes 0 0 0 0 0.21 0 0 0 0 

Chrysophytes 0 0.45 0.34 0 0 0 0 0 0 

P rochlorococcus 0 0 0 0 0 0.89 1.1 0 1 

Table 8: CHEMTAX Initial Pirgment Ratio table - Medium PAR 

Algal class Pigment ratios 

P erid 19 − but F uco 19 − hex Allo Zea Chl − b V iola D.Chl − a 

Diatoms 0 0 0.50 0 0 0 0 0 0 

Dinoflagellates 1.0 0 0 0 0 0 0 0 0 

Cyanophytes 0 0 0 0 0 0.49 0 0 0 

P rymnesiophytes 0 0.3 0.43 0 0 0 0 0 0 

Chlorophytes 0 0 0 0 0 0 0.41 0.06 0 

P rasinophytes 0 0 0 0 0 0 0.66 0.03 0 

Cryptophytes 0 0 0 0 0.27 0 0 0 0 

Chrysophytes 0 0.43 0.62 0 0 0 0 0 0 

P rochlorococcus 0 0 0 0 0 0.89 0.60 0 1.0 
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Table 9: CHEMTAX Initial Pirgment Ratio table - High PAR 

Algal class Pigment ratios 

P erid 19 − but F uco 19 − hex Allo Zea Chl − b V iola D.Chl − a 

Diatoms 0 0 0.45 0 0 0 0 0 0 

Dinoflagellates 1.0 0 0 0 0 0 0 0 0 

Cyanophytes 0 0 0 0 0 0.49 0 0 0 

P rymnesiophytes 0 0.30 0.43 0 0 0 0 0 0 

Chlorophytes 0 0 0 0 0 0.10 0.41 0.06 0 

P rasinophytes 0 0 0 0 0 0 0.53 0.04 0 

Cryptophytes 0 0 0 0 0.21 0 0 0 0 

Chrysophytes 0 0.45 0.34 0 0 0 0 0 0 

P rochlorococcus 0 0 0 0 0 0.89 0.17 0 1.0 
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